23 research outputs found

    From perfect secrecy to perfect safety & security: Cryptography-based analysis of endogenous security

    Get PDF
    In this paper, we propose a conjecture that endogenous security without any prior knowledge is similar to perfect secrecy without any prior knowledge. To prove the conjecture, we first establish a cryptography model of instinct function security to transform the security problem in the network domain into an encryption problem in the cryptographic domain. Then, we inherit and apply the established ideas and means of Perfect Secrecy, and propose the concept, definition and corollaries of the perfect instinct function security (PIFS) corresponding to Perfect Secrecy. Furthermore, we take the DHR system as a concrete implementation of PIFS and propose the DHR Perfect Security Theorem corresponding to Shannon’s Perfect Secrecy Theorem. Finally, we prove that the DHR satisfying the “One-Time Reconstruction” constraint is the sufficient and necessary condition to achieve perfect security. This means that the existence of PIFS is also proven. The analysis shows that any reconfigurable system can be encrypted by its construct and that the PIFS converts the one-way transparent superiority of the attacker into a double-blind problem for both the attacker and the defender, which leads to that the attacker is impossible to obtain useful construction information from the attacks and unable to find a better way than blind trial-and-error or brute-force attacks. Since the attackers are required to have the new powerful ability to crack the structure cryptogram, the threshold of cyber security is raised to at least the same level as cryptogram deciphering, thereafter the ubiquitous cyber threats are destined to be significantly reduced

    Intelligent Computing: The Latest Advances, Challenges and Future

    Get PDF
    Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing. Intelligent computing is still in its infancy and an abundance of innovations in the theories, systems, and applications of intelligent computing are expected to occur soon. We present the first comprehensive survey of literature on intelligent computing, covering its theory fundamentals, the technological fusion of intelligence and computing, important applications, challenges, and future perspectives. We believe that this survey is highly timely and will provide a comprehensive reference and cast valuable insights into intelligent computing for academic and industrial researchers and practitioners

    Intelligent computing : the latest advances, challenges and future

    Get PDF
    Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing

    On integrated security and safety

    No full text

    Problems and solutions regarding generalized functional safety in cyberspace

    No full text
    The common endogenous security problems in cyberspace and related attack threats have posed subversive challenges to conventional theories and methods of functional safety. In the current design of the cyber physical system (CPS), functional safety and cyber security are increasingly intertwined and inseparable, which evolve into the generalized functional safety (S&S) problem. The conventional reliability and cybersecurity technologies are unable to provide security assurance with quantifiable design and verification metrics in response to the cyberattacks in hardware and software with common endogenous security problems, and the functional safety of CPS facilities or device has become a frightening ghost. The dynamic heterogeneity redundancy (DHR) architecture and coding channel theory (CCT) proposed by the cyberspace endogenous security paradigm could handle random failures and uncertain network attacks in an integrated manner, and its generalized robust control mechanism can solve the universal problem of quantitative design for functional safety under probability or improbability perturbation. As a generalized functional safety enabling structure, DHR opens up a new direction to solve the common endogenous security problems in the cross-disciplinary fields of cyberspace

    Cyberspace mimic defense: generalized robust control and endogenous security

    No full text

    From perfect secrecy to perfect safety & security: Cryptography-based analysis of endogenous security

    No full text
    In this paper, we propose a conjecture that endogenous security without any prior knowledge is similar to perfect secrecy without any prior knowledge. To prove the conjecture, we first establish a cryptography model of instinct function security to transform the security problem in the network domain into an encryption problem in the cryptographic domain. Then, we inherit and apply the established ideas and means of Perfect Secrecy, and propose the concept, definition and corollaries of the perfect instinct function security (PIFS) corresponding to Perfect Secrecy. Furthermore, we take the DHR system as a concrete implementation of PIFS and propose the DHR Perfect Security Theorem corresponding to Shannon’s Perfect Secrecy Theorem. Finally, we prove that the DHR satisfying the “One-Time Reconstruction” constraint is the sufficient and necessary condition to achieve perfect security. This means that the existence of PIFS is also proven. The analysis shows that any reconfigurable system can be encrypted by its construct and that the PIFS converts the one-way transparent superiority of the attacker into a double-blind problem for both the attacker and the defender, which leads to that the attacker is impossible to obtain useful construction information from the attacks and unable to find a better way than blind trial-and-error or brute-force attacks. Since the attackers are required to have the new powerful ability to crack the structure cryptogram, the threshold of cyber security is raised to at least the same level as cryptogram deciphering, thereafter the ubiquitous cyber threats are destined to be significantly reduced

    Innovative Development Strategy of New Network Technologies

    No full text
    The ever-increasing demand for new businesses and the continuous development of the Internet economy have increasingly demanded network communications and service capabilities, and the infrastructure and the deriving technology system of the existing network still face a series of major challenges. New network architectures and key technologies have become the core of a new round of technological revolution and industrial upgrading in the world. Therefore, studying the strategic conception and development paths of new network technology innovation becomes an urgent need for China. In this article, we analyze the challenges faced by the current network technology, discuss the development status of new network fields in China and abroad, and summarize the development trend of new network technologies. Subsequently, we summarize the gaps and development goals of China in the new network field. Finally we propose the key technologies for the new network development in China, including new network architecture, network fulldimension definable technology, polymorphic addressing and routing technology, network intelligence technology, and endogenous security structure. From the aspect of technology roadmap, we suggest that an open, integrated, and secure new architecture should be established to build a new network environment that is intelligent, diversified, personalized, robust, and efficient. From the aspect of national policy, we suggest that support policies should be formulated regarding technology research and development, industrial ecology construction, and market access
    corecore